- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Prasaad, Guna (2)
-
Suciu, Dan (2)
-
Cheung, Alvin (1)
-
Kenig, Batya (1)
-
Mundra, Pranay (1)
-
Salimi, Babak (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Research on transaction processing has made significant progress towards improving performance of main memory multicore OLTP systems under low contention. However, these systems struggle on workloads with lots of conflicts. Partitioned databases (and variants) perform well on high contention workloads that are statically partitionable, but time-varying workloads often make them impractical. To- wards addressing this, we propose Strife—a novel transac- tion processing scheme that clusters transactions together dynamically and executes most of them without any con- currency control. Strife executes transactions in batches, where each batch is partitioned into disjoint clusters with- out any cross-cluster conflicts and a small set of residuals. The clusters are then executed in parallel with no concur- rency control, followed by residuals separately executed with concurrency control. Strife uses a fast dynamic clustering al- gorithm that exploits a combination of random sampling and concurrent union-find data structure to partition the batch online, before executing it. Strife outperforms lock-based and optimistic protocols by up to 2× on high contention workloads. While Strife incurs about 50% overhead relative to partitioned systems in the statically partitionable case, it performs 2× better when such static partitioning is not possible and adapts to dynamically varying workloads.more » « less
-
Kenig, Batya; Mundra, Pranay; Prasaad, Guna; Salimi, Babak; Suciu, Dan (, SIGMOD)Acyclic schemes have numerous applications in databases and in machine learning, such as improved design, more efficient storage, and increased performance for queries and ma- chine learning algorithms. Multivalued dependencies (MVDs) are the building blocks of acyclic schemes. The discovery from data of both MVDs and acyclic schemes is more challenging than other forms of data dependencies, such as Functional Dependencies, because these dependencies do not hold on subsets of data, and because they are very sensitive to noise in the data; for example a single wrong or missing tuple may invalidate the schema. In this paper we present Maimon, a system for discovering approximate acyclic schemes and MVDs from data. We give a principled definition of approximation, by using notions from information theory, then describe the two components of Maimon: mining for approximate MVDs, then reconstructing acyclic schemes from approximate MVDs. We conduct an experimental evaluation of Maimon on 20 real-world datasets, and show that it can scale up to 1M rows, and up to 30 columns.more » « less
An official website of the United States government
